
ОТДЕЛ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ Г. ЗВЕРЕВО РОСТОВСКОЙ ОБЛАСТИ МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА ИМЕНИ ГЕНРАЛ-ЛЕЙТЕНАНТА Б.П. ЮРКОВА

Принята на заседании педагогического совета от 29.08.2023гг. Протокол N_2 1

Утверждаю: Директор МБОУ СОШ № 1 им. Б.П. Юркова _____ Т.В. Мищенко Приказ №1250-ОД от 29.08.2023 г.

Дополнительная

общеобразовательная общеразвивающая программа «Методы решения физических задач» на 2023-2024 учебный год

Возраст обучающихся: 15-16 лет

Срок реализации: 1 год

Автор-составитель: Паршенкова Ольга Николаевна учитель физики

ПАСПОРТ ПРОГРАММЫ

Дата составления программы	15.08.2023г.
Срок реализации программы	Долгосрочная (1 год)
Дата реализации программы	2023-2024 учебный год
Вид программы	Модифицированная (адаптированная) программа
Направленность программы	Естественно-научная
Профиль программы	физика
Функциональность программы	учебно-познавательная
Форма содержания программы	интегрированная
Уровень программы	ознакомительный
Уровень реализации программы	Среднее общее образование
Форма реализации программы	Индивидуальная, групповая
Форма обучения	Очная
Объем освоения программы	35часов
Цели программы	познавательные
Структура программы	I. Пояснительная записка
	II. Содержание программы
	III.Организационно-педагогические условия реализации
	программы
	IV. Список используемых источников

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная рабочая программа составлена на основе:

- **1.** Федерального закона Российской Федерации "Об образовании в Российской Федерации" от 29.12.2012 N 273-Ф3.
- **2.** Приказа Министерства образования и науки РФ от 17 декабря 2010 г. N 1897 "Об утверждении федерального государственного образовательного стандарта основного общего образования" (с изменениями и дополнениями от: 29 декабря 2014 г., 31 декабря 2015 г.)
- **3.** Примерной основной общеобразовательной программы основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15).
- **4.** Федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования. (Утвержден приказом Министерства образования и науки Российской Федерации № 254 от 20.05.2020 г.);
- **5.** Примерной программы, основного общего образования по физике для 10-11 классов (примерная программа по учебным предметам. Физика 10-11 классы. М.:Просвещение,2010год);
- **6.** Авторской программы Генденштейна Л.И. и Дика Ю.И. (Программы и примерное поурочное планирование для общеобразовательных учреждений. Физика. 7—11 классы / авт.-сост. Л. Э. Генденштейн, В. И. Зинковский. М.:Мнемозина,2011.) и обеспечена УМК по физике для 10-11 классов;
- **7.** Программы элективных курсов. Физика. 9-11 классы. Профильное обучение., составитель: В.А. Коровин, «Дрофа», 2008 г.
- **8.** Авторская программа «Методы решения физических задач»: В.А. Орлов, Ю.А.Сауров, М.: Дрофа, 2008 г.
- **9.** Учебное пособие «Практика решения физических задач. 10-11 классы»: В.А. Орлов, Ю.А. Сауров, «Вентана-Граф», 2013
- 10. ООП ООО МБОУ СОШ № 1 им. Б.П.Юркова (Принята на заседании педагогического совета протокол № 1 от 29.08.2023г. Утверждена приказом № 250-ОД от 29.08.2023г.)
- **11.** Учебного плана МБОУ СОШ № 1 им. Б.П.Юркова на 2022-2023 учебный год. (Утвержден приказом №250-ОД от 129.08.2023г.)
- **12.** Годового календарного графика МБОУ СОШ № 1 им. Б.П.Юркова на 2023-2024 учебный год. (Утвержден приказом № 250 -ОД от 129.08.2023г.)
- 13. Методические рекомендации по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественно-научной и технологической направленностей («Точка роста») (Утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. № Р-6). URL: http://www.consultant.ru/document/cons_doc_LAW 374694/ (дата обращения: 10.03.2021).

Согласно учебному плану на дополнительную программу по курсу физики в 10 классе отводится 1 час в неделю, 34 часа в год.

Количество учебных часов, на которое рассчитана данная программа в 10 классе в соответствии с учебным планом, годовым календарным учебным графиком – 35 часов.

Актуальность, новизна, педагогическая целесообразность программы:

Настоящая программа нацелена на качественное усвоение школьниками предметных знаний и получение дополнительных знаний, необходимых для успешного освоения физической картины мира, на формирование и развитие общеучебных умений, на помощь в профессиональном самоопределении, на реализацию себя, на осознанный выбор направления своего дальнейшего образования. На занятиях создаются такие условия, что обучающиеся могут удовлетворить индивидуальные образовательные потребности, развить творческий потенциал, адаптироваться и встроиться в современное общество.

Курс программы рассчитан на обучающихся 10 классов и предполагает совершенствование подготовки школьников по освоению основных разделов физики. Содержание элективного курса отличается от базового глубиной рассмотрения физических процессов, расширением изучаемого материала по сравнению с программным, разбором задач, требующих нестандартных подходов. Настоящая программа является дополняющим материалом к основному учебнику физики. Она позволяет более глубоко и осмысленно изучать практические и теоретические вопросы физики. Программа посвящена рассмотрению отдельных тем, важных для успешного освоения методов решения задач повышенной сложности. В программе рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно-измерительных материалов по ЕГЭ, а также практическая часть. В практической части рассматриваются вопросы по решению экспериментальных задач, которые позволяют применять математические знания и навыки, которые способствуют творческому и осмысленному восприятию материала.

Цифровая лаборатория «Точка роста» кардинальным образом изменяет методику и содержание экспериментальной деятельности. Широкий спектр цифровых датчиков позволяет учащимся знакомиться с параметрами физического эксперимента не только на качественном, но и на количественном уровне. Программа элективного курса согласована с требованиями государственного образовательного стандарта и содержанием основных программ курса физики профильной школы. Она ориентирует учителя и ученика на дальнейшее совершенствование уже усвоенных учащимися знаний и умений. Особое внимание уделяется значению изучаемого материала для жизни и здоровья человека.

При изучении курса учащиеся выполняют ряд обязательных зачётных работ и контрольных тестов по разделам.

Цели и задачи дополнительной образовательной программы:

Обучение нацелено на формирование и поддержание интереса к физике, углубление знаний по физике и практических навыков по решению физических задач школьников 10-х классов для качественной подготовки к дальнейшему профессиональному обучению.

При отборе содержания занятий, уровня сложности задач учитывается общий уровень подготовки школьников, показанный на входящей аттестации. Решение учебных физических задач остаётся ведущим методом обучения физике. С помощью решения задач сообщаются знания о конкретных объектах и явлениях, создаются и решаются проблемные ситуации, формируются практические и интеллектуальные умения, сообщаются знания по истории науки и техники, формируются такие качества личности, как целеустремлённость, настойчивость, аккуратность, внимательность, дисциплинированность, развиваются эстетические чувства, формируются творческие способности. В период ускорения научнотехнического прогресса на каждом рабочем месте необходимы умения ставить и решать задачи науки, техники, жизни. При подборе задач учитываются индивидуальные особенности кружковцев, в частности, всегда подбираются как простые задачи на овладение ключевыми понятиями и методами решения, так и более сложные задачи для более сильных/подготовленных школьников, требующие значительной работы при выполнении решения.

Цель программы – воспитание и развитие всесторонне развитой личности средствами предмета.

Исходя из поставленной цели и организационных особенностей кружка ставятся следующие задачи кружка:

- развитие мыслительных процессов учащихся;
- поддержание интереса к физике;
- совершенствование и углубление полученных в основном курсе физики знаний и умений;
- формирование представлений о постановке, классификации, приёмах и методах решения школьных физических задач;
- развитие экспериментальных умений и навыков.

Отличительные особенности данной образовательной программы от уже существующих образовательных программ

Программа кружков согласована с содержанием программы школьного курса физики. Она предполагает дальнейшее совершенствование школьником уже усвоенных знаний и умений. Полученные ранее навыки решения задач отрабатываются для новых учебно-научных ситуаций.

Укрепление познавательного интереса и развитие мотивации школьников достигается как подбором задач, так и методикой работы с ними. На занятиях сочетаются коллективные и индивидуальные формы работы, предполагаются также домашние задания. В итоге школьники должны выйти на методологический уровень работы с физической задачей: решать по спроектированному плану, владеть, подбирать и использовать основные приёмы решения, осознанно выполнять математические преобразования и пр.

Особенности организации образовательного процесса:

Общее количество часов в год – 35часов

Количество часов и занятий в неделю – 1 занятие (40 мин) в неделю

Программа адресована – подросткам 15-16 лет.

Наполняемость в группах составляет: не менее 15 человек;

Режим занятий – пятница с 13.45 ч. до 14.25 ч.

Состав группы – постоянный

По гендерному подходу – смешанные (для девочек и для мальчиков)

Условия набора обучающихся в коллектив: принимаются все желающие.

СОДЕРЖАНИЕ ПРОГРАММЫ:

1. Механика

Кинематика поступательного и вращательного движения. Уравнения движения. Графики основных кинематических параметров.

Динамика. Законы Ньютона. Силы в механике: силы тяжести, упругости, трения, гравитационного притяжении. Статика. Момент силы. Условия равновесия. Движение тел со связями, приложение законов Ньютона. Законы сохранения импульса и энергии.

2. Молекулярная физика и термодинамика

Изопроцессы. Первый закон термодинамики и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

3. Электродинамика (электростатика и постоянный ток)

Потенциал электростатического поля точечного заряда. График и напряженности потенциала. Принцип суперпозиции электрических полей.

Расчет разветвленных электрических цепей. КПД и мощность схем и соединений

4.Комбинированные задачи

Тематическое планирование

Тема	Теория (часы)	Практика (часы)
1.Решение задач по теме «Кинематика» (6 ч)	2	4
2. Решение задач по теме «Динамика» (5 ч.)	2,5	2,5
3. Решение задач по теме «Законы сохранения» (6ч.)	3	3
4. Решение задач по теме «Статика» (1ч.)	0,5	0,5
5. Решение задач по теме «МКТ и термодинамика» (9 ч.)	2	7
6. Решение задач по теме «Электродинамика» (7 ч.)	3	4
7. Комбинированные задачи (1 ч.)	0	1
Итого	13	22
	35	·

Учебно-тематическое планирование:

№	Тема занятия	Ко	личество	Дата		
		всего	теория	практика	План.	Факт.
Me	ханика :		•			
Ки						
1	Определение положения тела в	1	1		01/09/2023	
	пространстве. Способы описания					
	движения.					
2	Уравнение равномерного	1		1	08/09	
	прямолинейного движения. Решение					
	графических задач на уравнение					
	равномерного прямолинейного					
	движения.					
3	Сложение скоростей. Решение задач	1	1		15/09	
	по теме «Сложение скоростей».					
4	Определение кинематических	1		1	22/09	
	характеристик движения с помощью					
	графиков. Решение задач по теме					
	«Движение с постоянным					
	ускорением».					
5	Движение с постоянным ускорением	1		1	29/09	
	свободного падения. Решение задач					
	по теме «Движение с постоянным					
	ускорением свободного падения».					
6	Решение задач на кинематику	1		1	06/10	
	твердого тела					
Ди	<u>намика (5 ч)</u>					
7	Принцип суперпозиции сил.	1	0,5	0,5	13/10	
	Решение задач на второй закон					
	Ньютона.					
8	Принцип относительности Галилея.	1	1		20/10	
	Инвариантные и относительные					
	величины.					
9	Сила тяжести на других планетах.	1	1		27/10	
	Первая космическая скорость.					
10	Решение задач по темам «Закон	1		1	03/10	
	всемирного тяготения», «Первая					
	космическая скорость».					
11	Решение задач на силу упругости и	1		1	10/10	
	силу трения.					

Зан	соны сохранения (6 ч.)				
12	Решение задач по теме «Закон	1		1	17/10
	сохранения импульса».	_		-	17710
13	Кинетическая энергия и её	1	1		24/10
	измерение.				
14	Работа силы тяготения.	1	1		01/12
	Потенциальная энергия в поле				
	тяготения.				
15	Решение задач по теме «Закон	1		1	08/12
	сохранения механической энергии»				
16	Динамика вращательного движения	1	1		15/12
	абсолютно твёрдого тела.				
17	Решение задач по теме «Динамика	1		1	22/12
	вращательного движения абсолютно				
	твёрдого тела».				
Ст	атика (1 ч <u>)</u>		· '		
18	Равновесие абсолютно твёрдого	1	0,5	0,5	29/12
	тела. Решение задач.				
Oc	новы МКТ и термодинамика (9	ч)			
19	Решение задач по темам «Основные	1		1	12/01/2024
	положения МКТ», «Основное				
	уравнение молекулярно-				
	кинетической теории».				
20	Измерение скоростей молекул газа.	1	1		19/01
	Энергия теплового движения				
	молекул.				
21	Решение задач по теме « Уравнение	1		1	26/01
	состояния идеального газа».				
22	Решение задач по теме « Газовые	1		1	02/02
	законы. Определение параметров				
	газа по графикам изопроцессов»				
23	Решение задач по теме «Внутренняя	1		1	09/02
	энергия. Работа».				
24	Решение задач по теме «Количество	1		1	16/02
	теплоты. Уравнение теплового				
	баланса»				
25	Применение первого закона	1	1		01/03
	термодинамики к различным				
	процессам.				12/22
26	Решение задач на законы	1		1	12/03
	термодинамики.				22 /02
27	Решение задач по теме «КПД	1		1	22/03
	тепловых двигателей»				

Эл	ектродинамика(7 ч)2					
28	Решение задач на закон Кулона.	1		1	<u>29/03</u>	
29	Близкодействие и действие на	1	1		05/04	
	расстоянии.					
30	Напряжённость электрического	1	1		12/04	
	поля. Принцип суперпозиции полей.					
	Проводники и диэлектрики в					
	электростатическом поле.					
31	Решение задач по теме	1		1	19/04	
	«Электроёмкость. Энергия					
	заряженного конденсатора»					
32	Решение задач по теме «Закон Ома.	1		1	26/04	
	Последовательное и параллельное					
	соединения проводников».					
33	Решение задач по теме «Работа и	1		1	03/05	
	мощность постоянного тока. Закон					
	Ома для полной цепи»					
34	Электрический ток через контакт	1	1		17/05	
	полупроводников с разным типом					
	проводимости. Транзисторы.					
	Плазма.					
35	Комбинированные задачи	1		1	24/05	

Планируемые результаты:

Достижение учащимися современных образовательных результатов посредством включения их в процедуры понимания, проектирования, коммуникации и рефлексии, которые становятся универсальными способами учебно-познавательной деятельности, приводит к изменению позиции школьника в системе учения.

Выпускник научится:

- -характеризовать взаимосвязь между физикой и другими естественными основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник получит возможность научиться:

- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебноисследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

Формы контроля:

Одной из форм государственной итоговой аттестации выпускников школы является единый государственный экзамен (ЕГЭ). Поэтому формами контроля усвоения полученных знаний и приобретенных умений в данном элективном курсе служат тематические тесты и контрольные работы по типу ЕГЭ. В дальнейшем это поможет учащимся быстрее сосредоточиться на содержании, а не на форме проведения реального экзамена.

Основными методами проверки знаний и умений являются устный опрос, письменные работы. К письменным формам контроля относятся: физические диктанты, самостоятельные и контрольные работы, тесты, тесты в форме ЕГЭ. Основные виды проверки знаний — текущая и итоговая. Текущая проверка проводится систематически из урока в урок, а итоговая — по завершении темы (раздела), курса.

Форма текущего контроля

Устный опрос; письменные задания; собеседование; тесты действия; самостоятельная работа; контрольная работа; тест в форме ЕГЭ; домашнее задание.

Форма итогового контроля

Контрольная работа; тест в форме ЕГЭ.

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

• занятия проводятся в кабинете №37 (кабинет физики) — в котором находится центр «Точка Роста». Кабинет имеет примыкающее лаборантское помещение, оснащенное наборами оборудования для проведения экспериментальной деятельности по основным разделам физики.

• Информационно-коммуникационные средства

Справочные информационные ресурсы (энциклопедия, справочные материалы, таблицы).

Электронная библиотека наглядных пособий по физике и астрономии

• Технические средства обучения (ТСО)

Компьютер;

Мультимедийный проектор;

Проекционный экран;

Интерактивная доска.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ:

- 1. Кирик, Л.А. Физика-11. Разноуровневые самостоятельные и контрольные работы. М.: Илекса, 2009. 205 с.: ил.
- 2.Марон, А.Е. Физика. 11класс: Дидактические материалы / А.Е.Марон, Е.А.Марон. М.: Дрофа, 2004. 160 с.: ил.
- 3.Мякишев, Г.Я. Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни/ Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский; под ред. В.И.Николаева, Н.А.Парфентьевой. 19-е изд. М.: Просвещение, 2010.
- 4.Программы для общеобразовательных учреждений. Физика. Астрономия. 7-11 кл./сост. В.А.Коровин, В.А.Орлов. М.: Дрофа, 2008. 334, [2] с.
- 5. Рабочие программы по физике. 7-11 классы/Авт.-сост. В.А.Попова. 3-е изд. Исправ.- М.: Планета, 2013. 216 с.
- 6.Рымкевич, А.П. Физика. Задачник. 10-11 кл.: пособие для общеобразоват. Учреждений / А.П.Рымкевич. 15-е изд., стереотип. М.: Дрофа, 2011. 188, [4] с.: ил. (Задачники "Дрофы").
- 7. Бабаев, В.С. Физика (7-11 классы): нестандартные задачи с ответами и решениями / В.С.Бабаев. М.: Эксмо, 2007. -144 с. (Мастер-класс для учителя)
- 8. Бурцева, Е.Н. 500 контрольных заданий: кн. Для учителя / Е.Н.Бурцева, В.А.Пивень, Л.Н.Терновская. М.:Просвещение, 2007. 96 с.
- 9. Гельфгат, И.М. 1001 задача по физике с ответами, указаниям и, решениями / И.М.Гельфгат, Л.Э. Генденштейн, Л.А. Кирик. М.: Илекса, 2011. 352 с.
 - 10. Зорин, Н. И. Элективный курс «Методы решения физических задач: 10-11 классы». М., ВАКО, 2007. 186 с.
- 11. Орлов, В. Л. Сауров, Ю. А. «Методы решения физических задач». М., Дрофа, 2005. 132 с.
- 12. Хуторской, А.В., Хуторская, Л.Н., Маслов, И.С. Как стать ученым. Занятия по физике со старшеклассниками. М.: Изд-во "Глобус", 2008. 318 с. (Профильная школа)
- 13. Авторы-составители: Горяинов В.С., Карайчев Г.В., Коваленко М.И. Школьные олимпиады: физика, математика, информатика. 8-11 класс / Серия "Здравствуй, школа!". Ростов н/Д: Феникс, 2004. 192 с.
- 14. Долгушин, А.Н. Делаем интерактивную презентацию к уроку физики / А.Н.Долгушин. М.: Чистые пруды, 2010. 32 с.: ил. (Библиотечка "Первого сентября", серия "Физика". Вып. 32).

15. Зорин, Н.И. ЕГЭ 2012. Физика. Сдаем без проблем! / Н.И.Зорин. — М.: Эксмо, 2011. — 336 с. — (ЕГЭ. Сдаем без проблем).